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A Search Model of the Aggregate Demand
for Safe and Liquid Assets

Abstract

Safe and liquid assets, such as Treasury bonds, are money-like instruments that command

a convenience yield. We analyze this in a search model of two assets that differ in liquidity

and safety. In contrast to the reduced-form approach, which puts the safe and liquid asset

in utility function, we explicitly model investors’ trading needs and the trading friction.

One new insight from this approach is that the marginal investor’s preference for safety

and liquidity is no longer enough in determining the premium. Instead, the distribution

of investors’ preferences plays a direct role. The model implies that an increase in the

supply of Treasury securities decreases the credit spread of investment-grade bonds, but

increases the spread between investment-grade and junk bonds.
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1 Introduction

There has been growing interest in the role of “safe and liquid assets” in a financial

system, especially since the recent financial crisis. One finding that emerges from these

studies is that safe and liquid assets, such as Treasury bonds, are like money, commanding

a sizeable premium for their safety and liquidity (Krishnamurthy and Vissing-Jorgensen

2012). What are the determinants of this premium? How does the supply of Treasury

bonds affect the premium? When risky assets become more liquid, how does it affect their

own prices, as well as the Treasury price? What is the welfare implication when traders

invest to improve the liquidity of risky assets?

One framework for addressing these questions is a representative agent model. For

example, Krishnamurthy and Vissing-Jorgensen (2012) follow the tradition of money-in-

the-utility-function formulation (e.g., Sidrauski 1967) and include the Treasury holding

in the representative investor’s utility function. In equilibrium, the liquidity premium is

determined such that the representative agent is indifferent between holding the Treasury

and a less liquid asset. That is, the representative agent is the marginal investor whose

indifference condition determines the liquidity premium. The appeal of this reduced-form

approach is its simplicity, and one can analyze the liquidity premium without explicitly

modeling investors’ trading needs and trading frictions.

Our paper adopts an alternative framework, and explicitly models investors’ trading

needs and trading frictions. Not only does this make it possible to directly connect liq-

uidity premium to trading frictions—it also reveals an important insight that is absent

in the reduced-form representative agent framework. Specifically, the marginal investor’s

liquidity preference is no longer enough in determining the premium. Instead, the dis-

tribution of investors’ liquidity preferences also plays a direct role. For example, we find

that an increase in the supply of Treasury bonds may increase or decrease their liquidity

premium, depending on the distribution of investors’ liquidity preferences.

The intuition is the following. Suppose assets 1 and 2 have identical cash flows, but
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asset 2 is “more liquid” than asset 1. In the reduced-form approach, asset 2 being more

liquid is modeled as investors deriving a “convenience yield” from holding asset 2 (i.e.,

putting the holding of asset 2 in an investor’s utility function). Let P1 and P2 be the

prices of assets 1 and 2, respectively. The liquidity premium, P2 − P1, is determined

by the present value of the marginal investor’s convenience yield, that is, the marginal

investor’s liquidity preference fully determines the premium.

However, this is no longer the case once we explicitly take trading frictions into ac-

count. Suppose that asset 2 is perfectly liquid, and that the friction for trading asset 1 is

that investors need to search in the market and can trade only when they meet their coun-

terparties. In this case, the marginal investor’s liquidity preference cannot fully determine

the premium. To see this, suppose that P1 decreases by one dollar due to a reduction of

demand from its investors. We will see that, if the marginal investor between assets 1

and 2 remains the same, P2 will decrease by less than one dollar, and hence the liquidity

premium P2 − P1 will increase. The reason is that the marginal investor’s value function

is less sensitive to P1 than to P2: Intuitively, since asset 2 is perfectly liquid, P2 is the

price at which an investor can transact right away. So, a one-dollar drop in P2 leads to

a one-dollar increase in his value function. In contrast, a one-dollar drop in P1 leads to

a less-than-one-dollar increase in his value function. This is due to the trading friction:

P1 is the price at which the investor can transact only when he meets his counterparty.

There is a chance that the investor cannot find his counterparty before his trading need

disappears. This point arises naturally once we explicitly account for the trading friction,

but is absent in the reduced-form approach that abstracts away from trading frictions.

We formalize the above intuition in an infinite-horizon economy with two assets. In

the baseline model, the two assets are claims to identical cash flows but have different

liquidity. Asset 1 (e.g., agency debt) is less liquid, and trade occurs only when a buyer

meets a seller. In contrast, asset 2 (e.g., Treasury) is perfectly liquid and transactions

occur without any delay. There is a continuum of investors, whose trading needs are due

to the changes of their valuations of the two assets. In particular, when a type-∆ investor
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receives $1 from asset 1 or 2, he derives a utility of 1 + ∆. One interpretation for ∆ is

that the investor (e.g., an insurance company or pension fund) has a strong preference for

long-term stable cash flows, and so his ∆ is positive. Alternatively, ∆ can be negative,

representing the case where the investor has a liquidity shock and needs to sell his asset.

Without loss of generality, we normalize the region for investors’ types to [0,∆]. An

investor’s type stays constant until the arrival of a shock. Once the shock arrives, his

new type is drawn from a random variable, which has a density function of f(·) on [0,∆].

Investors’ types are independent from one another. Hence, in the steady state, f(·) is also

the cross-sectional distribution of investors’ types.

We show that, in equilibrium, there are two cutoff points, ∆∗ and ∆∗∗, with 0 < ∆∗ <

∆∗∗ < ∆. Investors with high types (i.e., ∆ ∈ [∆∗∗,∆]) choose to buy asset 2, those

with intermediate types (i.e., ∆ ∈ [∆∗,∆∗∗]) choose to buy asset 1, and those with low

types (i.e., ∆ ∈ [0,∆∗]) choose not to buy any asset. Investors ∆∗ and ∆∗∗ are marginal

investors: investor-∆∗∗ is indifferent between buying asset 1 and buying asset 2, while

investor-∆∗ is indifferent between buying asset 1 and not buying any asset.

The liquidity preference of the marginal investor between the two assets (i.e., ∆∗∗)

affects the liquidity premium, but, as explained earlier, it cannot fully pin down the

liquidity premium. We find that the liquidity premium increases in ∆∗∗ but decreases in

∆∗. Intuitively, a higher ∆∗∗ means that trading delay is more costly for the investor.

Hence, asset 2 commands a higher premium. How does ∆∗ affect the liquidity premium?

Since investor-∆∗ is the marginal investor between investing asset 1 and not investing,

holding everything else constant, a decrease in ∆∗ decreases P1. In response to this drop

in P1, as noted earlier, P2 would decrease less than P1 does. That is, the liquidity premium

P2 − P1 increases when ∆∗ decreases.

Our model implies that an increase in the supply of asset 2 may increase or decrease

the liquidity premium, depending on the distribution f(·). Intuitively, when the supply of

asset 2 increases, it attracts more investors with high ∆, pushing down both ∆∗∗ and ∆∗.

As noted earlier, the liquidity premium increases in ∆∗∗ but decreases in ∆∗. In the case
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illustrated in Panel A of Figure 1, for example, f(∆∗) is significantly larger than f(∆∗∗).

That is, there are many investors whose ∆ is around ∆∗, but very few investors around

∆∗∗. When the supply of asset 2 increases, ∆∗∗ decreases significantly, but ∆∗ decreases

only slightly. Hence, the impact from ∆∗∗ dominates, and the increase in the supply of

asset 2 decreases the liquidity premium. Similarly, in the case illustrated in Panel B of

Figure 1, f(∆∗) is significantly lower than f(∆∗∗). The impact from ∆∗ dominates, and

the increase in the supply of asset 2 increases the liquidity premium.
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Figure 1: Distribution of liquidity preferences across investors f(·).

What are the empirical implications from this result? Suppose we interpret asset 2

as Treasury bonds and asset 1 as agency bonds or highly rated corporate bonds. Then,

it might be reasonable to think this case is summarized by Panel A: a small fraction of

investors have very high ∆. For example, commercial banks can use Treasury securities

as collateral to issue checking accounts, and hedge funds can use them as collateral for

their derivative positions. For most investors, however, their ∆ is modest. In this case,

the increase in Treasury supply decreases the yield spreads between Treasury and highly

rated bonds, as documented in Krishnamurthy and Vissing-Jorgensen (2012). On the

other hand, if we interpret asset 1 as junk bonds and asset 2 as bonds with investment-

grades and above, the case is more likely to correspond to Panel B, where very few

investors are the marginal investors for asset 1 (i.e., f(∆∗) is small). In this case, our

model implies that the increase of the supply of Treasury securities increases the spread
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between junk bonds and investment-grade bonds.

When the search friction in market 1 is alleviated, how does it affect P1 and P2? Our

model shows that it decreases P2, because when trading asset 1 is easier, asset 2 becomes

relatively less appealing. Moreover, the liquidity improvement in market 1 has a mixed

impact on P1. Intuitively, when the search becomes more difficult, sellers in market 1 are

willing to accept a lower price to speed up their transactions. Similarly, buyers are willing

to offer a higher price to reduce their waiting time. Hence, the total impact is mixed, and

depends on the strength of the two forces.

Our welfare analysis on the investment in the search technology for market 1 shows

that investors may over- or underinvest relative to a central planner. The reason is that the

investment has two externalities. First, when an investor improves his search technology,

it not only benefits himself, but also benefits his potential trading partners. This leads to

a free-riding problem and underinvestment. Second, investment in the search technology

helps more investors to execute their trades, and so reduces the number of investors

in the market, making it more difficult for all investors to meet their counterparties.

Investors don’t internalize this negative externality and so overinvest relative to a central

planner. Hence, the tradeoff between the two effects determines whether investors over- or

underinvest in their search technology. We find that overinvestment occurs when investors’

expected trading frequency is in the intermediate region.

Our paper belongs to the recent literature that analyzes asset prices in the search

framework of Duffie, Garleanu, and Pedersen (2005), which has been extended to include

risk-averse agent (Duffie, Garleanu, and Pedersen (2007)) and unrestricted asset holdings

(Lagos and Rocheteau (2009)). The framework has been adopted to address a number of

issues, such as security lending (Duffie, Garleanu, and Pedersen (2002)), liquidity provision

(Weill (2007)), on-the-run/off-the-run premium (Vayanos and Wang (2007), Vayanos and

Weill (2008)), cross-sectional returns (Weill (2008)), liquidity during a financial crisis

(Lagos, Rocheteau, and Weill (2011)), as well as the interaction between corporate default

decision and liquidity (He and Milbradt (2013)). Our paper is related to these studies,
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and one distinctive feature is our analysis of the supply effect on the premium. The key

insight from our model is the contrast between the reduced-form approach and the search

approach that explicitly accounts for trading frictions. This is parallel to the point stressed

in the classical search-theoretical model of Kiyotaki and Wright (1989), which emphasizes

the importance of explicitly modeling the frictions that render money essential.1

2 The Model

Time is continuous and goes from 0 to ∞. There is a continuum of investors, and the

total population size is N . They have access to a riskless bank account with an interest

rate r. There are two assets, assets 1 and 2, which are traded in two separate markets.

The supplies for assets 1 and 2 are X1 and X2, respectively, and X1 + X2 < N . In the

baseline model, the two assets have the same cash flows, and each unit of the asset pays $1

per unit of time until infinity. However, the market for asset 1 is less liquid. Specifically,

let µb
1 and µs

1 be the measures of buyers and sellers in market 1. Then, a buyer meets

a seller at the rate λµs
1, where λ > 0 is a constant. That is, during [t, t + dt) a buyer

meets a seller with a probability λµs
1dt. Similarly, a seller meets a buyer at the rate λµb

1.

Hence, the probability for an investor to meet his partner per unit of time is proportional

to the population size of the investors on the other side of the market. The total number

of matching pairs per unit of time is λµs
1µ

b
1. The search friction reduces when λ increases,

and completely disappears when λ goes to infinity. There is a search cost of ϵ per unit

of time. That is, if an investor searches in the market for asset 1, he incurs a cost of ϵdt

during [t, t+ dt). The market for asset 2 is more liquid. To simplify our analysis, we let

the search friction in market 2 go to 0, i.e., investors in market 2 can trade instantly.

Investors have different types, and their types may change over time. If an investor’s

current type is ∆, he derives a utility 1 + ∆ when receiving the $1 coupon from either

1This idea has led to the so-called New Monetarist Economics, which emphasize that assets are valued
not only for their fundamentals (i.e., claims to consumption goods) but also for their liquidity—the extent
to which they facilitate exchange in an imperfect market (see Williamson and Wright (2010, 2011) for
recent surveys). Some studies in this literature have explored its implications for finance; see, e.g., Lagos
(2010) and Lester, Postlewaite, and Wright (2012).
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asset. One interpretation for a positive ∆ is that some investors, such as insurance

companies, have a strong preference for long-term bonds, as modeled in Vayanos and

Vila (2009). Another interpretation is that some investors can benefit from using those

assets as collateral and so value them more, as discussed in Bansal and Coleman (1996)

and Gorton (2010). An interpretation of a negative ∆ can be that the investor suffers

a liquidity shock and so finds it costly to carry the asset on his balance sheet. We

assume that ∆ can take any value in a closed interval. Without loss of generality, we

can normalize the interval to
[
0,∆

]
. Each investor’s type changes independently with

intensity κ. That is, during [t, t+ dt), with a probability κdt, an investor’s type changes

and is independently drawn from a random variable, which has a cumulative distribution

function F (·) and a density function f (·) on the support
[
0,∆

]
.

The changes in investors’ types make them trade the two assets. Following Duffie,

Garleanu, and Pedersen (2005) and Vayanos and Wang (2007), we assume each investor

can hold either 0 or 1 unit of only one of the assets. An investor can buy an asset only

when he currently does not hold either asset, and can sell an asset only if he is currently

holding the asset. All investors are risk-neutral and share the same time discount rate r.

An investor’s objective function is given by

sup
θ1τ ,θ2τ

Et

[∫ ∞

t

e−r(τ−t) ((θ1τ + θ2τ ) (1 + ∆τ )dτ − ϵ1τdτ − P1τdθ1τ − P2τdθ2τ )

]
,

where θ1τ and θ2τ are the investor’s holdings in assets 1 and 2 at time τ ; ∆τ is the

investor’s type at time τ ; 1τ is an indicator variable, which is 1 if the investor is searching

to buy or sell asset 1, and 0 otherwise; and Piτ , for i = 1, 2, is asset i’s price at time τ

and will be determined in equilibrium.

2.1 Demographics

Investors can be classified into three categories: owners of asset 1 (θ1t = 1 and θ2t = 0),

owners of asset 2 (θ1t = 0 and θ2t = 1), and non-owners (i.e., θ1t = θ2t = 0). This section

describes each category in detail. A non-owner with a type ∆ has three choices: search

to buy asset 1, buy asset 2, or stay inactive. Define the following notations N ≡ [0,∆∗
0],
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B1 ≡ [∆∗
0,∆

∗∗
0 ], B2 ≡ [∆∗∗

0 ,∆]. We will show later that a non-owner’s optimal choice can

be summarized as 
stay inactive if ∆ ∈ N ,
search to buy asset 1 if ∆ ∈ B1,
buy asset 2 if ∆ ∈ B2.

(1)

That is, he buys asset 2 if ∆ ∈ B2, searches to buy asset 1 if ∆ ∈ B1, and stays inactive

if ∆ ∈ N . There are two cutoff points, ∆∗
0 and ∆∗∗

0 . A non-owner is indifferent between

staying inactive and searching to buy asset 1 at ∆∗
0, and is indifferent between searching

to buy asset 1 and buying asset 2 at ∆∗∗
0 . Note that due to the search friction in market 1,

the buyers of asset 1 face a delay in their transactions. In the meantime, their types may

change, and they may choose to take other actions accordingly. In market 2, however, the

buyers become owners of asset 2 instantly.

An owner of asset 1 has two choices: search to sell asset 1 or hold on to it. Define

the following notations S1 ≡ [0,∆∗
1], H1 ≡ [∆∗

1,∆]. We will show later that this investor’s

optimal choice can be summarized as{
search to sell his asset if ∆ ∈ S1,
hold on to his asset if ∆ ∈ H1.

(2)

That is, he searches to sell asset 1 if ∆ ∈ S1, and holds on to the asset if ∆ ∈ H1.

An owner of asset 1 is indifferent between the two actions if his type is ∆∗
1. Moreover,

investors face a delay in selling their asset 1. In the meantime, their types may change,

and they may need to adjust their action accordingly. If an investor succeeds in selling

his asset 1, he becomes a non-owner and faces the three choices described in equation (1).

An owner of asset 2 also has two choices: sell it or hold on to it. Define the following

notations S2 ≡ [0,∆∗
2], H2 ≡ [∆∗

2,∆]. We will show later that this investor’s optimal

choice can be summarized as{
sell his asset if ∆ ∈ S2,
hold on to his asset if ∆ ∈ H2.

(3)

That is, he sells asset 2 if ∆ ∈ S2, and holds on to the asset if ∆ ∈ H2. An owner of

asset 2 is indifferent between the two actions if his type is ∆∗
2. Note that since there is no

search friction in market 2, investors can execute their transactions right away.
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Due to the changes in ∆ and executions of their trades, investors’ types change over

time. We now describe the evolution of the population sizes of each category of investors.

Since we will focus on the steady-state equilibrium, we will omit the time subscript for

the population size of each group of investors. For i = 1, 2, we use µs
i to denote the

population size of the sellers for asset i, and use µb
i to denote the population size of the

buyers for asset i. Similarly, we use µh
i , for i = 0, 1, 2, to denote the population sizes

of the inactive investors who are non-owners, owners of asset 1, and owners of asset 2,

respectively. Hence, there are seven groups of investors.

Figure 2 illustrates investors’ migration across the seven groups. For sellers of asset

1, for example, the inflow to this group during the period [t, t+ dt] is µh
1κF (∆∗

1)dt, since

κF (∆∗
1) is the intensity for an inactive asset 1 holder to become a seller (i.e., his type

becomes lower than ∆∗
1). The outflow from the group of asset-1 sellers has two compo-

nents. First, during the period [t, t+dt], λµb
1µ

s
1dt investors succeed in selling their asset 1

and become inactive non-owners. Second, κµs
1 [1− F (∆∗

1)] dt investors do not want to sell

asset 1 any more because their types now become higher than ∆∗
1. In the steady state,

the inflow equals the outflow:

µh
1κF (∆∗

1) = λµb
1µ

s
1 + κµs

1 [1− F (∆∗
1)] . (4)

Applying the same logic to the buyers of asset 1, inactive owners of asset 1, and

inactive non-owners, we obtain the following:

κµh
0 [F (∆∗∗

0 )−F (∆∗
0)] + κµh

2 [F (∆∗
2)−F (∆∗

0)] = λµb
1µ

s
1 + κµb

1[F (∆∗
0) + 1−F (∆∗∗

0 )],(5)

κµs
1 [1− F (∆∗

1)] + λµb
1µ

s
1 = κµh

1F (∆∗
1), (6)

λµb
1µ

s
1 + κ

(
µb
1 + µh

2

)
F (∆∗

0) = κµh
0 [1− F (∆∗

0)]. (7)

Market 2 has no search friction, the measures of buyers and sellers are infinitesimal,

µb
2 = κ

(
µh
0 + µb

1

)
[1− F (∆∗∗

0 )]dt (8)

µs
2 = κµh

2F (∆∗
2)dt, (9)
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Figure 2: This plot illustrates each investor group’s size and inflows and outflows. The

black solid arrows denote the flows induced by trading, and the blue dash arrows denote

the flows due to the changes in investors’ types.

and during each instant [t, t+ dt), the flow of buyers is equal to the flow of sellers

(
µh
0 + µb

1

)
[1− F (∆∗∗

0 )] = µh
2F (∆∗

2). (10)

Finally, the investors in all groups add up to the total population:

µh
1 + µs

1 + µb
1 + µh

2 + µs
2 + µb

2 + µh
0 = N. (11)

2.2 Value functions

For the case θ1t = θ2t = 0 (i.e., the investor is a non-owner), we use V b
1 (∆), V b

2 (∆), and

V h
0 (∆) to denote the investor’s expected utility if he chooses to buy asset 2, to search to

buy asset 1, and to stay inactive, respectively. For the case θ1t = 1 and θ2t = 0 (i.e.,

the investor is an owner of asset 1), we use V s
1 (∆) and V h

1 (∆) to denote the investor’s

expected utility if he searches to sell asset 1, and to keep asset 1, respectively. For the

case θ1t = 0 and θ2t = 1 (i.e., the investor is an owner of asset 2), we use V s
2 (∆) and

V h
2 (∆) to denote the investor’s expected utility if he chooses to sell asset 2, and to keep

asset 2, respectively. From the definition and the fact that these expected utilities are
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time-invariant in the steady state, we obtain the following equations:

V b
1 (∆) =

−ϵ+ λµs
1

[
V h
1 (∆)− P1

]
+ κE

[
max

{
V b
1 (∆′) , V b

2 (∆′) , V h
0 (∆′)

}]
λµs

1 + κ+ r
, (12)

V h
1 (∆) =

1 + ∆+ κE
[
max

{
V s
1 (∆′) , V h

1 (∆′)
}]

κ+ r
, (13)

V s
1 (∆) =

1+∆−ϵ+ λµb
1 max

{
V h
0 (∆),V b

2(∆)
}
+λµb

1P1+κE
[
max

{
V s
1(∆

′),V h
1 (∆

′)
}]

λµb
1 + κ+ r

,(14)

V b
2 (∆) = V h

2 (∆)− P2, (15)

V s
2 (∆) = max

{
V h
0 (∆) , V b

1 (∆)
}
+ P2, (16)

V h
2 (∆) =

1 + ∆+ κE
[
max

{
V s
2 (∆′) , V h

2 (∆′)
}]

κ+ r
, (17)

V h
0 (∆) =

κ

κ+ r
E
[
max

{
V b
1 (∆′) , V b

2 (∆′) , V h
0 (∆′)

}]
. (18)

From the above equations, we immediately obtain the following.

Lemma 1 An investor’s expected utility is more sensitive to P2 than to P1:
∂V b

2 (∆)

∂P2
= −1

and
∂V b

1 (∆)

∂P1
= − λµs

1

λµs
1+κ+r

.

The intuition for this lemma is the following. The market for asset 2 is perfectly

liquid, i.e., a buyer can pay P2 to get asset 2 right away. Hence, holding everything else

constant, a one-dollar drop in P2 increases the investor’s expected utility by one dollar.

In contrast, a one-dollar drop in P1 does not mean the investor gets a one-dollar benefit.

This is because the market for asset 1 is illiquid, and the investor may not be able to

benefit fully from the price drop. Due to the delay in searching, the investor can only

enjoy the benefit in the future. Moreover, the investor may not be able to benefit at all

if he cannot meet a seller before his ∆ changes and his demand disappears. As a result,

the investor’s expected utility is less sensitive to P1. Note that this intuition is absent in

the money-in-the-utility-function formulation, where the trading friction is not explicitly

modeled and the notion of liquidity is captured by putting the liquid asset directly into

investors’ utility function. Hence, the sensitivity of the buyer’s expected utility to price

is still one-to-one: a one-dollar drop in price increases the expected utility by one dollar.
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2.3 Equilibrium

The market for asset 2 is perfectly liquid, and its price is determined by its market-clearing

condition. The price of asset 1 is determined by the interactions between buyers, whose

∆ is in [∆∗
0,∆

∗∗
0 ], and sellers, whose ∆ is in [0,∆∗

1]. We make the following simplifying

assumption: Investors take P1 as given and decide whether they want to buy, sell, or stay

inactive. The price is determined such that the “most reluctant” buyer (investor-∆∗
0) and

the “most reluctant” seller (investor-∆∗
1) split the surplus:

P1 =
1

2

[
V s
1 (∆∗

1)− V h
0 (∆∗

1)
]
+

1

2

[
V h
1 (∆

∗
0)− V b

1 (∆
∗
0)
]
. (19)

This assumption allows us to obtain the equilibrium in closed form. The surplus-

sharing rule in (19) is not critical, and the results are similar if the bargaining power is

allocated differently. However, the assumption that investors take P1 as given reduces

their strategy space. For example, if each buyer-seller pair can negotiate their own price

when they meet, there would be a continuum of prices for asset 1. Our assumption rules

out this feature so we can focus on our main analysis. However, the main insights in our

paper do not rely on this simplifying assumption.2

Definition 1 A steady-state equilibrium consists of asset prices P1 and P2, the cutoff

points (∆∗
0,∆

∗∗
0 ,∆∗

1,∆
∗
2), such that

1) the implied sizes of each group (µh
1 , µ

s
1, µ

b
1, µ

h
2 , µ

s
2, µ

b
2, µ

h
0) satisfy (4)–(11);

2) the choices implied by (1)–(3) and (12)–(18) are optimal for all investors;

2Specifically, we solved an alternative model in which when a buyer meets a seller in the market for
asset 1, they bargain to share their surplus. Hence, the transaction price depends on the types of the
buyer and the seller. In equilibrium, there is a continuum of prices for asset 1. Another complication of
this alternative model is due to the endogenous distribution of investors’ types. For example, relative to
a low-∆ buyer, a high-∆ buyer is more likely to meet a seller with whom he can reach an agreement for
a transaction. Consequently, in the steady state, there will be fewer high-∆ buyers. So, the equilibrium
is the solution to a complex fixed-point problem where the distribution of investor types determines the
intensity of matching, which in turn determines the distribution of investor types. Due to the extra
complication in this equilibrium, we have to rely heavily on numerical analysis. It is reassuring that the
main results in the current paper (e.g., Proposition 3) still hold in this alternative model. The simplifying
assumption (19) leads to a closed-form expression for the equilibrium in our current model, and makes
the intuition transparent. Details of the alternative model are available upon request.
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3) both markets clear:

X1 = µh
1 + µs

1. (20)

X2 = µh
2 . (21)

The following proposition reports the results for the case where the search cost ϵ

converges to 0. Our discussion will focus on this case, with the only exception in Section

2.6, where we analyze the impact of search cost on asset prices.

Proposition 1 When the search cost ϵ converges to 0, the steady-state equilibrium for

the above economy is the following. The cutoff points are given by

∆∗
0 = ∆∗

1 = ∆∗,

∆∗
2 = ∆∗∗

0 = ∆∗∗,

where

∆∗ = F−1

(
1− X1 +X2

N

)
, (22)

∆∗∗ = F−1

(
1− X2

N −X1

)
. (23)

The population sizes for each group are given by

µs
1 = µb

1 = µ1, (24)

µh
1 = X1 − µ1, (25)

µh
0 = N −X2 −X1 − µ1, (26)

µh
2 = X2, (27)

µb
2 = κX2

(
1− X2

N −X1

)
dt (28)

µs
2 = κX2

(
1− X2

N −X1

)
dt, (29)

where

µ1 ≡

√( κ

2λ

)2
+

κX1

λ

(
1− X1 +X2

N

)
− κ

2λ
. (30)

13



The asset prices are given by

P1 =
1 +∆∗

r
+

κ

r

∫ ∆∗∗

∆∗ [1− F (∆)] d∆

λµ1 + κ+ r
− κ

r

∫ ∆∗

0
F (∆) d∆

λµ1 + κ+ r
, (31)

P2 =
1 +∆∗∗

r
− λµ1

λµ1 + κ+ r

∆∗∗ −∆∗

r
. (32)

This proposition shows that, when the search cost ϵ goes to 0, the four cutoff points

collapse into two: ∆∗ and ∆∗∗. A non-owner with a type ∆∗ is indifferent from buying

asset 1 and not buying any asset. A holder of asset 1 with a type ∆∗ is indifferent between

holding the asset and selling it. Similarly, a non-owner with a type ∆∗∗ is indifferent from

buying asset 1 and buying asset 2; a holder of asset 2 with a type ∆∗∗ is indifferent between

holding the asset and selling it. Equations (24)–(29) characterize the population size of

each group of investors. In particular, equation (24) shows that the buyers and sellers for

asset 1 have the same population size. Moreover, since there is no delay in trading asset

2, at each point in time, the groups of investors who need to buy or sell asset 2 (i.e., µb
2

and µs
2) are infinitesimal, as shown in equations (28) and (29). Hence, virtually all the

supply of asset 2 is held by inactive holders, as shown in equation (27).

Equation (31) shows that asset 1’s price has three components. The first term, 1+∆∗

r
,

is the marginal investor’s present value of the cash flow and convenience from the asset.

The second term reflects the liquidity impact from the buyers, whose types range from

∆∗ to ∆∗∗. They are eager to get the asset, and this pushes up P1. On the other hand,

the trading friction makes sellers, whose types range from 0 to ∆∗, willing to sell at a low

price. This effect is captured by the third term. When the search friction disappears, i.e.,

λ goes to infinity, the last two terms converge to 0 and P1 converges to 1+∆∗

r
.

The price of asset 2 is in equation (32). The first term, 1+∆∗∗

r
, is the marginal investor’s

present value of the cash flow and convenience from the asset. The second term reflects

the discount due to the investors’ outside option of buying asset 1. Asset 1 is cheaper,

but one has to face a delay in the transaction. The higher the search friction, the less

valuable the outside option of buying asset 1 is. When the search friction goes to infinity

(i.e., λ goes to 0), the outside option value goes to 0 and the second term becomes 0. On

14



the other hand, when the search friction disappears, i.e., λ goes to infinity, P2 converges

to 1+∆∗

r
. That is, when the search friction disappears, the two assets become the same

and have the same price. These results immediately lead to the following proposition.

Proposition 2 The effect of the search friction on asset prices is as follows:

∂P1

∂λ
< 0 if ∆∗∗ −∆∗ >

∫ ∆∗∗

0

F (∆) d∆,

∂P1

∂λ
> 0 if ∆∗∗ −∆∗ <

∫ ∆∗∗

0

F (∆) d∆,

∂P2

∂λ
< 0.

When the search technology in market 1 improves, its effect on P1 depends on the

tradeoff between buyers’ impact and sellers’ impact, which are captured by the second

and third terms in equation (31). Note that the condition ∆∗∗ −∆∗ >
∫ ∆∗∗

0
F (∆) d∆ is

equivalent to the second term being larger than the third term, that is, buyers’ impact

dominates. In this case, due to the search friction, buyers push up P1. Hence, when the

search technology improves, this effect weakens and P1 decreases. Similarly, in the other

case, ∆∗∗ − ∆∗ <
∫ ∆∗∗

0
F (∆) d∆, sellers’ impact dominates and P1 increases when the

search techonology improves. Finally, when the search technology improves, it increases

asset 2 buyers’ outside option value, since they can more easily obtain asset 1. This

reduces the comparative advantage of asset 2 and so reduces P2.

2.4 The liquidity premium

Since assets 1 and 2 have identical cash flows, the price difference, P2 − P1, reflects the

liquidity premium. From (31) and (32), the liquidity premium is given by

LP =
∆∗∗ −∆∗ + κ

r

∫ ∆∗∗

0
F (∆) d∆

λµ1 + κ+ r
. (33)

The above expression immediately shows that the liquidity premium is always positive

and decreases when the search friction decreases (i.e., when λ increases). As λ goes to

infinity, the friction in market 1 disappears, and the liquidity premium converges to 0.
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Another observation from (33) is that the liquidity premium depends on not only

the marginal investor’s liquidity preference ∆∗∗, but also the distribution of all investors’

preferences F (·). In particular, the liquidity premium is increasing in ∆∗∗ but decreasing

in ∆∗. Intuitively, investor ∆∗∗ is the marginal investor who is indifferent between buying

assets 1 and 2. He can pay P2 to obtain asset 2 right away. Asset 1 is cheaper, but he has

to face a delay in the transaction. In the meantime, he is giving up his convenience ∆∗∗.

The investor is indifferent about the two assets if the price difference (i.e., the liquidity

premium) is the same as the present value of the convenience that the marginal investor

expects to lose during his search. Hence, the liquidity premium increases in ∆∗∗.

It is less obvious that the liquidity premium also depends on ∆∗. The intuition is

the following. Suppose ∆∗ decreases. This reduces P1 since the type-∆∗ investor is the

marginal investor between buying asset 1 and not buying any asset. How does P2 respond

to the drop in P1? For investor-∆∗∗ to be indifferent between assets 1 and 2, P2 has to

decrease. If P1 drops by one dollar, how much should P2 decrease to keep investor-∆∗∗

indifferent? The answer is less than one dollar. The reason is that, as noted in Lemma 1,

an investor’s expected utility is more sensitive to P2 than to P1. That is, after a one-dollar

drop in P1, it takes a smaller drop in P2 to keep the investor indifferent between the two

assets. Therefore, a decrease in ∆∗ increases the liquidity premium. The above result

naturally leads to the following proposition.

Proposition 3 The liquidity premium decreases in X2 (i.e., ∂LP
∂X2

< 0) if

1

f (∆∗)
+

λκX1

[
∆∗∗ −∆∗ + κ

r

∫ ∆∗∗

0
F (∆) d∆

]
(2λµ1 + κ) (λµ1 + κ+ r)

<
N
(
1 + κ

r
F (∆∗∗)

)
N −X1

1

f (∆∗∗)
, (34)

but increases in X2 (i.e., ∂LP
∂X2

> 0) if

1

f (∆∗)
+

λκX1

[
∆∗∗ −∆∗ + κ

r

∫ ∆∗∗

0
F (∆) d∆

]
(2λµ1 + κ) (λµ1 + κ+ r)

>
N
(
1 + κ

r
F (∆∗∗)

)
N −X1

1

f (∆∗∗)
. (35)

This proposition shows that the supply of asset 2 may increase or decrease the liquidity

premium, depending on the distribution of the investors’ liquidity preferences. Intuitively,
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since an increase in X2 attracts more investors with high ∆, it pushes down both ∆∗ and

∆∗∗. That is, the increase in X2 has two effects. First, it decreases ∆∗∗ and so decreases

the premium. Second, it decreases ∆∗ and so increases the liquidity premium. The

strength of the two effects depends on the sensitivity of ∆∗ and ∆∗∗ to X2. From (22)

and (23), we have

∂∆∗

∂X2

= − 1

Nf(∆∗)
,

∂∆∗∗

∂X2

= − 1

(N −X1) f(∆∗∗)
.

So, the strength of the two effects is decreasing in f(∆∗) and f(∆∗∗), respectively.

Intuitively, a higher f(∆∗∗) means that there are more investors whose types are

around ∆∗∗. Hence, an increase in X2 pushes down ∆∗∗ less, and so the first effect (i.e.,

the effect through ∆∗∗) is weaker. Similarly, the strength of the second effect is weaker if

f(∆∗) is larger. This is illustrated in Figure 1. Panel A reflects condition (34): f(∆∗) is

high relative to f(∆∗∗). Hence, the first effect (i.e., the effect through ∆∗∗) dominates and

the supply of asset 2 decreases the liquidity premium. Similarly, under condition (35), as

illustrated in Panel B, f(∆∗∗) is high relative to f(∆∗). The second effect (i.e., the effect

through ∆∗) dominates and an increase in X2 increases the liquidity premium.

To better illustrate the result in Proposition 3, and also demonstrate that conditions

(34) and (35) are both attainable, we parameterize the density function f(·) as

f (∆) = a∆a−1, (36)

for ∆ ∈ (0, 1), where a is a constant and a > 0. The case a = 1 corresponds the uniform

distribution. When a increases, the slope of f(·) increases. So, a small a corresponds to

the case in Panel A of Figure 1, and a large a represents the case in Panel B.

Corollary 1 For the distribution in (36), ∂LP
∂X2

< 0 if a < â, and ∂LP
∂X2

> 0 if a > â, where

â is a constant and given by equation (78) in the Appendix.

In the uniform distribution case, i.e., a = 1, the liquidity premium is decreasing in X2,
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since we can see from the Appendix that the constant â is larger than 2. The corollary

shows that the liquidity premium becomes increasing in X2 only when the slope of f(·)

is sufficiently large, i.e., a > â, as illustrated in Panel B of Figure 1.

The empirical evidence in Krishnamurthy and Vissing-Jorgensen (2012) suggests that

the supply of Treasury securities decreases their premium. This is consistent with the

implication from the case a < â or Panel A in Figure 1. That is, the liquidity preference

among investors is such that many investors have a modest convenience (i.e., ∆), while

some other investors have large ∆. One can think of these investors with large ∆ as banks,

which can use Treasury securities as collateral to issue checking accounts, or hedge funds

that use Treasury securities as collateral for their derivative positions. Normal investors,

however, do not benefit as much from the liquidity and safety in Treasury securities.

The case where a > â (i.e., Panel B in Figure 1) may be relevant for some other

occasions. For example, if one interprets asset 1 as junk bonds and asset 2 as bonds with

investment grade and above, then most investors hold asset 2 for its liquidity and safety,

and only a small fraction of investors hold junk bonds. Hence, f(∆∗) is small relative

to f(∆∗∗), as in Panel B. In this case, the novel prediction from our model is that when

Treasury supply increases, the spread between junk bonds and investment-grade bonds

should go up.

2.5 Trading needs and asset prices

How do investors’ trading needs affect the asset prices and liquidity premium? In the

model, investors’ trading needs are summarized by κ. The higher κ is, the more frequently

each investor’s type changes, and hence the stronger the trading need. From Proposition

1, we obtain the following.

Proposition 4

∂P1

∂κ

{
> 0 if ∆∗∗ −∆∗ <

∫ ∆∗∗

0
F (∆) d∆

< 0 if ∆∗∗ −∆∗ >
∫ ∆∗∗

0
F (∆) d∆

∂P2

∂κ

{
< 0 if κ < κ∗,
> 0 if κ > κ∗,
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where

κ∗ ≡ r

1 +
√

rN
λX1(N−X1−X2)

.

This proposition shows that the impact of trading need on P1 depends on the impacts

of the buyers and sellers in market 1. As noted in Proposition 2, ∆∗∗−∆∗ <
∫ ∆∗∗

0
F (∆) d∆

implies that the buyers’ impact dominates. In this case, more trading need increases P1.

Similarly, if the sellers’ impact dominates, i.e., ∆∗∗ −∆∗ >
∫ ∆∗∗

0
F (∆) d∆, more trading

need decreases P1.

The effect of κ on P2 is more subtle. When κ increases, it has two effects. First, it

means more investors search in market 1, making it more liquid. This reduces asset 2’s

advantage and decreases P2. Second, a higher κ also means that investors expect a shorter

holding period. This makes the delay in trading asset 1 even less appealing, and hence

increases P2. When κ is smaller than κ∗, the first effect dominates and ∂P2

∂κ
< 0. In fact,

when κ goes to 0, both µs
1 and µb

1 go to 0, that is, market 1 becomes completely illiquid

and ∂P2

∂κ
converges to −∞. On the other hand, when κ > κ∗, investors expect to hold an

asset only for a short period of time. This makes the delay in market 1 less tolerable.

Hence, the second effect dominates and ∂P2

∂κ
> 0. Taken together, it is easy to see that

the effect of κ on the liquidity premium is mixed and depends on the relative strength of

the four effects discussed above.

2.6 Search cost and asset prices

This section examines the effect of search cost ϵ on asset prices. In particular, we construct

the equilibrium in Proposition 1 for the case with a search cost ϵ. The following proposition

reports the impact of the search cost.

Proposition 5 When ϵ is sufficiently small, ∂P2

∂ϵ
> 0, the sign of ∂P1

∂ϵ
is ambiguous, and

∂LP
∂ϵ

> 0.

The effect of search cost on P2 is intuitive. A higher search cost makes it more costly

to trade asset 1. This makes asset 2 more appealing and so increases P2. The effect on P1
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is more subtle. Since both parties have to incur cost when searching, both want the price

to move in the direction of their favor to cover the search cost. Sellers want to increase

the price, while buyers want to decrease the price. So the overall impact is mixed and

depends on the relative strength of the two effects. Finally, although the search cost has

a mixed impact on P1, the liquidity premium is increasing in the search cost.

2.7 Welfare

This section endogenizes the investment in the search technology, and analyzes the welfare

implications. In particular, we specify the cost of investing in the search technology and

the corresponding matching function as the following. Investor i has to pay Γ(λi) to

obtain a search technology λi, where Γ(·) is continuous, differentiable, increasing, and

convex, with Γ(0) = 0, Γ′(∞) = ∞. For simplicity, the cost Γ(λi) is paid at t = 0 before

the investor knows his type, and there is no further cost to maintain the technology and

investors cannot make adjustments to their technology after t = 0. Suppose investor i is

a buyer in market 1. Let λ̄ denote the average technology chosen by sellers. Then, during

[t, t+ dt) this buyer meets a seller with a probability
[
αλi + (1− α)λ̄

]
µs
1dt. That is, the

matching intensity is a linear combination of the buyer’s technology λi and the average

technology of all sellers λ̄. Similarly, suppose that investor i is a seller in market 1 and

that λ̄ is buyers’ average technology. Then, during [t, t+dt) this seller meets a buyer with

a probability
[
αλi + (1− α)λ̄

]
µb
1dt.

An investor’s objective function is

max
λi

E[V (∆)]− Γ(λi) (37)

where E[V (∆)] is an investor’s expected value function across states in the steady states.

We consider a symmetric equilibrium, in which all investors choose the same level of

technology. One degenerate equilibrium is that all investors choose not to invest in their

search technology at all and the market for asset 1 is shut down. In the following, we

focus on the more interesting equilibrium where investors choose to invest, and denote

this decentralized choice as λd.
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As a comparison, we also analyze the choice of a central planner, who chooses the

technology investment for all investors to maximize

max
λ

E[V (∆)]− Γ(λ). (38)

We denote this centralized choice as λc. The difference between (37) and (38) is that

when an investor makes a decentralized decision in (37), he takes other investors’ choice

λ̄ and the population distribution (e.g., µb
1 and µs

1) as given. In (38), however, the central

planner internalizes the consequences of investors’ decisions. The following proposition

compares the investment choices across the two cases.

Proposition 6 There are unique solutions λd and λc to (37) and (38), respectively. If

α ≤ 1
2
, decentralized decisions lead to underinvest, i.e., λd < λc. If α > 1

2
, decentralized

decisions may lead to over- or underinvestment.

There are two externalities in this economy. First, an investor’s investment in his technol-

ogy also benefits his potential future trading partners. This positive externality leads to a

free-riding problem, and hence underinvestment relative to the first best. Second, as the

search technology improves, more investors’ trading needs get matched, and hence fewer

investors are left searching in the market, reducing the marginal benefit of searching for

all investors. This negative externality leads to overinvestment.

The strength of the first externality is determined by α. The smaller the α, the

stronger the externality. The proposition shows that in the case of α ≤ 1
2
, the free-riding

problem always dominates and leads to underinvestment relative to the central planning

case. In the case of α > 1
2
, however, the second externality may dominate. In particular,

Panel A of Figure 3 plots the sensitivity of the population size to the search technology,

−∂µb
1/∂λ, against κ. It shows that this sensitivity is the strongest when κ is in the

intermediate region. This is the region where the second externality is the strongest.

Hence, as shown in Panel B, in the intermediate region for κ, we have λd > λc, i.e.,

investors overinvest relative to a central planner in this region. That is, decentralized
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decisions lead to underinvestment in the matching technology in markets where investors

expect to trade very infrequently or very frequently, but lead to overinvestment in markets

where the trading frequency is intermediate.

Panel A Panel B
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Figure 3: Panel A plots −∂µb
1/∂λ, against κ. Panel B plots λd−λc, against κ. Parameters

for both panels: X1 = 10, X2 = 10, N = 22. Other parameters for Panel B: α = 0.7,

r = 0.02, ∆ = 1, Γ(λ) = 0.1λ4.

2.8 The safety premium

The analysis so far has focused on the liquidity premium. We now move on to analyze

the safety premium. In particular, we modify the model by introducing a default risk to

asset 1. Specifically, asset 1 pays a constant cash flow of $1 per unit of time, until default,

which has an intensity of π. That is, during [t, t + dt), a fraction πdt of asset-1 holders

lose their holdings in asset 1, while the remaining asset-1 holders are intact. If default

happens to an investor who is trying to sell his asset 1, he becomes an inactive non-owner.

Alternatively, if an investor is an inactive holder of asset 1 when default happens to his

holding, he then chooses his optimal strategy (buy asset 1, buy asset 2, or stay inactive)

according to his current type ∆.

To keep the steady state stable, we assume that X1πdt units of asset 1 are issued

to market 1 during [t, t + dt), so that the total amount of asset 1 outstanding remains

a constant over time. The sellers of the newly issued asset 1 are treated the same as
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other sellers in market 1. The only difference is that the sellers of newly issued securities

leave the economy after they sell their assets. The steady-state equilibrium is defined

analogously to that in Definition 1, and is characterized in the following proposition.

Proposition 7 When the search cost ϵ goes to 0, the steady-state equilibrium is given by

P1 =
1 +∆†

π + r
+

κ

π + r

∆†† −∆† −
∫ ∆†

0
F (∆) d∆

λµb
1 + κ+ π + r

, (39)

P2 =
1 +∆††

r
− λµb

1

λµb
1 + κ+ π + r

∆†† −∆†

r
, (40)

where µb
1 is the solution to

1

κ

(
µb
1 +

κ+ π

λ

)[
λµb

1 + π

X1

− π

µb
1

]
= 1−

1
π+κ

λ
(
µb
1

)2
+ µb

1 +X2

N − κ
π+κ

λµb
1

λµb
1+π

X1

, (41)

and

F
(
∆††) = 1− X2

N − κ
π+κ

λµb
1

λµb
1+π

X1

,

F (∆†) =
1

κ

(
µb
1 +

κ+ π

λ

)(
λµb

1 + π

X1

− π

µb
1

)
,

µs
1 = µb

1 −
πX1

λµb
1 + π

,

µh
1 = X1 − µb

1,

µh
0 = N −X2 −

λµb
1

λµb
1 + π

X1 − µb
1.

The equilibrium shares many similar properties to those in Proposition 1. For example,

similar to the two cutoff points in the baseline model, we now have two cutoff points ∆†

and ∆††. Investor-∆† is indifferent between searching to buy asset 1 and staying inactive,

and investor-∆†† is indifferent between searching to buy asset 1 and buying asset 2. The

price of asset 1 is determined by the valuation of the marginal investor ∆† (i.e., 1+∆†

π+r
) and

the illiquidity effect from the buyers and sellers (i.e., the last term in equation (39)). The

price of asset 2 is determined by its marginal investor’s valuation 1+∆††

r
, and the discount

due to the investor’s outside option of buying asset 1 (i.e., the last term in equation (40)).
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When the search friction disappears, i.e., λ goes to infinity, asset 1 becomes perfectly

liquid and its price P1 converges to 1+∆∗

π+r
, and P2 converges to 1+∆∗

r
.

The price difference, P2 − P1, is due to the better liquidity and safety of asset 2. To

isolate the impact from safety, we define the safety premium as

SP ≡ lim
π→0

P1 − P1,

where limπ→0 P1 is the limit of the price of asset 1 when the default intensity converges

to 0. One can think of limπ→0 P1 as the price of an asset that is as liquid as asset 1, but

as safe as asset 2. Hence, SP reflects the safety premium that asset 2 commands. The

following proposition characterizes the properties of the safety premium.

Proposition 8 If λ is sufficiently large, the safety premium decreases with the supply

of asset 2, ∂SP
∂X2

< 0, and this impact is stronger when the default intensity is higher,

∂2SP
∂X2∂π

< 0.

Due to the default risk, the expected cash flow from asset 1 is lower. So, it is not

surprising that there is a safety premium. However, the above proposition shows that

the safety premium is related to the supply of asset 2. Intuitively, in the absence of

default, the marginal investor of asset 1 enjoys a convenience yield of ∆†. The default

risk, however, means that he can get only a fraction of it in expectation. That is, the

safety premium reflects a fraction of the convenience yield ∆† that is expected to be wiped

out by default. Hence, the safety premium increases in ∆†. When the supply of asset

2 increaes, it attracts more investors with high types, and so reduces ∆† and the safety

premium. Moreover, when the default intensity π is higher, the safety premium reflects a

larger fraction of the convenience yields ∆†, and hence is more sensitive to ∆†. Therefore,

the effect of supply of asset 2 on the safety premium is stronger.

3 Conclusion

We have analyzed a micro-founded model of the safety and liquidity premium. Relative

to the reduced-form money-in-the-utility-function approach, our model explicitly exam-
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ines investors’ trading needs and trading frictions. One new insight from our approach

is that the marginal investor’s preference for safety and liquidity is no longer enough in

determining the premium. Instead, the distribution of all investors’ preferences plays a

direct role. The model implies that an increase in the supply of Treasury securities de-

creases the credit spread of investment-grade bonds, but increases the spread between

junk bonds and investment-grade bonds. Our analysis highlights the importance of ex-

plicitly modeling trading frictions. This is parallel to the point stressed in the classical

search-theoretical model of Kiyotaki and Wright (1989), which emphasizes the importance

of explicitly modeling the frictions that render money essential.
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Appendix

Proof of Propositions 1–5

Step I. Non-owner’s optimal strategy. Equation (18) implies that V h
0 (∆) is a constant

for all ∆. We denote it by U ≡ V h
0 (∆). Differentiating (15) and (12), we obtain

dV b
2 (∆)

d∆
=

dV h
2 (∆)

d∆
=

1

κ+ r
, (42)

dV b
1 (∆)

d∆
=

λµs
1

λµs
1 + κ+ r

dV h
1 (∆)

d∆
=

λµs
1

λµs
1 + κ+ r

1

κ+ r
. (43)

Hence, V b
2 (∆) and V b

1 (∆) are linear in ∆ and
dV b

2 (∆)

d∆
>

dV b
1 (∆)

d∆
> 0 =

dV h
0 (∆)

d∆
, for any ∆.

We thus conjecture that there exist two cutoff points, ∆∗
0 and ∆∗∗

0 , such that

max{V h
0 (∆) , V b

1 (∆) , V b
2 (∆)} =


U , if ∆ ∈ [0,∆∗

0) ,
V b
1 (∆) , if ∆ ∈ [∆∗

0,∆
∗∗
0 ] ,

V b
2 (∆) , if ∆ ∈

(
∆∗∗

0 ,∆
]
,

(44)

V b
1 (∆∗

0) = V h
0 (∆∗

0) = U, (45)

V b
1 (∆∗∗

0 ) = V b
2 (∆∗∗

0 ) . (46)

From (45) and (46), we can write V b
1 (∆) and V b

2 (∆) as

V b
1 (∆) = V b

1 (∆∗
0) +

λµs
1

λµs
1 + κ+ r

∆−∆∗
0

κ+ r
= U +

λµs
1

λµs
1 + κ+ r

∆−∆∗
0

κ+ r
, (47)

V b
2 (∆) = V b

2 (∆∗∗
0 ) +

∆−∆∗∗
0

κ+ r
= U +

λµs
1

λµs
1 + κ+ r

∆∗∗
0 −∆∗

0

κ+ r
+

∆−∆∗∗
0

κ+ r
, (48)

where have used V b
1 (∆∗

0) = U in (47) and V b
2 (∆∗∗

0 ) = U +
λµs

1

λµs
1+κ+r

∆∗∗
0 −∆∗

0

κ+r
in (48).

From (18) and the optimal strategy specified in (44), we have

U =
κ

κ+ r

[∫ ∆∗
0

0

UdF (∆) +

∫ ∆∗∗
0

∆∗
0

V b
1 (∆) dF (∆) +

∫ ∆

∆∗∗
0

V b
2 (∆) dF (∆)

]
.

Substituting (47) and (48) into the above equation and rearranging, we obtain

U =
κ

r

 λµs
1

λµs
1 + κ+ r

∫ ∆∗∗
0

∆∗
0

[1− F (∆)] d∆

κ+ r
+

∫ ∆

∆∗∗
0
[1− F (∆)] d∆

κ+ r

 . (49)
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Step II. Asset 2 owner’s optimal strategy. Differentiating (17), we obtain

dV h
2 (∆)

d∆
=

1

κ+ r
. (50)

Equations (16) and (44) imply that

V s
2 (∆) =

{
U + P2, if ∆ < ∆∗

0,

U + P2 +
λµs

1

λµs
1+κ+r

∆−∆∗
0

κ+r
, if ∆ ≥ ∆∗

0.
(51)

Since the slope of V h
2 (∆) is larger than that of V s

2 (∆) for all ∆, we conjecture that

there exists a cutoff point ∆∗
2 such that

max{V s
2 (∆) , V h

2 (∆)} =

{
V s
2 (∆) , if ∆ < ∆∗

2,
V h
2 (∆) , if ∆ ≥ ∆∗

2,
(52)

V s
2 (∆∗

2) = V h
2 (∆∗

2) . (53)

We have the following chain of equalities:

U +
λµs

1

λµs
1 + κ+ r

∆∗∗
0 −∆∗

0

κ+ r

(a)
= V b

1 (∆∗∗
0 )

(b)
= V b

2 (∆∗∗
0 )

(c)
= V h

2 (∆∗∗
0 )− P2

(d)
=

1 +∆∗∗
0 + κE

[
max

{
V s
2 (∆′) , V h

2 (∆′)
}]

κ+ r
− P2,

where (a) is due to (47), (b) is due to (46), (c) is due to (15), and (d) is due to (17).

Rearranging, we have

U + P2 =
1 +∆∗∗

0 + κE
[
max

{
V s
2 (∆′) , V h

2 (∆′)
}]

κ+ r
− λµs

1

λµs
1 + κ+ r

∆∗∗
0 −∆∗

0

κ+ r
. (54)

It is easy to verify that ∆∗
2 > ∆∗

0. Hence, equation (51) implies

V s
2 (∆∗

2) = U + P2 +
λµs

1

λµs
1 + κ+ r

∆∗
2 −∆∗

0

κ+ r
.

The above equation, (17), and (53) imply

U + P2 =
1 +∆∗

2 + κE
[
max

{
V s
2 (∆′) , V h

2 (∆′)
}]

κ+ r
− λµs

1

λµs
1 + κ+ r

∆∗
2 −∆∗

0

κ+ r
. (55)

From equations (54) and (55) we have ∆∗
2 = ∆∗∗

0 .

Step III. Asset 1 owner’s optimal strategy. Differentiating (13) and (14), we obtain

dV h
1 (∆)

d∆
=

1

κ+ r
. (56)
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dV s
1 (∆)

d∆
=

{
1

λµb
1+κ+r

, if ∆ < ∆̂0,
1

κ+r
, if ∆ > ∆̂0,

(57)

where ∆̂0 =
λµs

1∆
∗
0+(κ+r)∆∗∗

0

λµs
1+κ+r

∈ (∆∗
0,∆

∗∗
0 ).

The slope of V s
1 (∆) and V h

1 (∆) are the same for the region ∆ > ∆̂0. We must

have V s
1 (∆̂0) ≤ V h

1 (∆̂0), because otherwise it implies V s
1 (∆) > V h

1 (∆) for all ∆, i.e.,

no investors want to hold asset 1. Hence, there should be a cutoff point ∆∗
1, such that

∆∗
1 ≤ ∆̂0 and

max{V s
1 (∆) , V h

1 (∆)} =

{
V s
1 (∆) , if ∆ < ∆∗

1,
V h
1 (∆) , if ∆ ≥ ∆∗

1,
(58)

V s
1 (∆∗

1) = V h
1 (∆∗

1) . (59)

From (57), we obtain

V s
1 (∆) =

 V s
1 (∆∗

1) +
∆−∆∗

1

λµb
1+κ+r

, if ∆ ≤ ∆̂0,

V s
1 (∆∗

1) +
∆̂0−∆∗

1

λµb
1+κ+r

+ ∆−∆̂0

κ+r
, if ∆ > ∆̂0.

(60)

Since ∆∗
1 ≤ ∆̂0, we have the following chain of equalities:

V s
1 (∆∗

1)
(a)
=

(b)
=(κ+r)V h

1 (∆∗
1)

(c)
=(κ+r)V s

1 (∆∗
1)︷ ︸︸ ︷

1 + ∆∗
1 + κE

[
max

{
V s
1 (∆′) , V h

1 (∆′)
}]

− ϵ+ λµb
1 (U + P1)

λµb
1 + κ+ r

=
(κ+ r)V s

1 (∆∗
1)− ϵ+ λµb

1 (U + P1)

λµb
1 + κ+ r

(d)
= − ϵ

λµb
1

+ U + P1, (61)

where (a) is due to (14), (b) is due to (13), (c) is due to (59), and (d) is the result after

some algebra. Therefore, (61) and (59) lead to

V h
1 (∆∗

1) = − ϵ

λµb
1

+ U + P1. (62)

Because V h
1 (∆) is linear in ∆ as shown in (56), we have

V h
1 (∆∗

0) = V h
1 (∆∗

1) +
∆∗

0 −∆∗
1

κ+ r
= − ϵ

λµb
1

+ U + P1 +
∆∗

0 −∆∗
1

κ+ r
. (63)

On the other hand,

U
(a)
= V b

1 (∆∗
0)

(b)
=

−ϵ+ λµs
1

[
V h
1 (∆∗

0)− P1

]
+

(c)
=(κ+r)U︷ ︸︸ ︷

κE
[
max

{
V b
1 (∆′) , V b

2 (∆′) , V h
0 (∆′)

}]
λµs

1 + κ+ r

=
−ϵ+ λµs

1

[
V h
1 (∆∗

0)− P1

]
+ (κ+ r)U

λµs
1 + κ+ r

(d)
= − ϵ

λµs
1

+ V h
1 (∆∗

0)− P1, (64)
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where (a) is due to (45), (b) is due to (12), (c) is due to (15), and (d) can be obtained

after some algebra. Substituting (63) into the above equation and rearranging, we obtain

∆∗
0 −∆∗

1

κ+ r
=

ϵ

λµs
1

+
ϵ

λµb
1

. (65)

This verifies ∆∗
0 > ∆∗

1 when ϵ > 0.

Step IV. From (61), (64), and (45), we obtain

V s
1 (∆∗

1) = − ϵ

λµb
1

+ U + P1,

V h
0 (∆∗

1) = U,

V h
1 (∆∗

0) = U + P1 +
ϵ

λµs
1

,

V b
1 (∆∗

0) = U.

Substituting the above into (19) and rearranging, we obtain

µb
1 = µs

1. (66)

Let µϵ
1 ≡ µb

1. Condition (65) can be rewritten as

∆∗
0 −∆∗

1

κ+ r
=

2ϵ

λµϵ
1

. (67)

Step V. From (58), we have

E
[
max

{
V s
1 (∆) , V h

1 (∆)
}]

=

∫ ∆∗
1

0

V s
1 (∆) dF (∆) +

∫ ∆

∆∗
1

V h
1 (∆) dF (∆) . (68)

Here, V h
1 (∆) can be expressed as

V h
1 (∆) = V h

1 (∆∗
1) +

∆−∆∗
1

κ+ r
.

Substituting the above expression and (60) into (68), after some algebra, we have

E
[
max

{
V s
1 (∆) , V h

1 (∆)
}]

= V h
1 (∆∗

1)−
∫ ∆∗

1

0
F (∆) d∆

λµb
1 + κ+ r

+

∫ ∆

∆∗
1
[1− F (∆)] d∆

κ+ r
. (69)

From (13), we have

V h
1 (∆∗

1) =
1 + ∆∗

1 + κE
[
max

{
V s
1 (∆′) , V h

1 (∆′)
}]

κ+ r
, (70)
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Substituting this into (69) and rearranging, we have

E
[
max

{
V s
1 (∆) , V h

1 (∆)
}]

=
κ+ r

r

1 + ∆∗
1

κ+ r
−
∫ ∆∗

1

0
F (∆) d∆

λµb
1 + κ+ r

+

∫ ∆

∆∗
1
[1− F (∆)] d∆

κ+ r

 .

The above equation, (49), (62) , and (70) imply

P1 =
1 +∆∗

1

r
+

ϵ

λµϵ
1

+
κ

r

∫ ∆∗∗
0

∆∗
0

[1− F (∆)] d∆

λµϵ
1 + κ+ r

−
∫ ∆∗

1

0
F (∆) d∆

λµϵ
1 + κ+ r

+

∫ ∆∗
0

∆∗
1
[1− F (∆)] d∆

κ+ r

 .

Step VI. From (52), we have

E
[
max

{
V s
2 (∆) , V h

2 (∆)
}]

=

∫ ∆∗∗
0

0

V s
2 (∆) dF (∆) +

∫ ∆

∆∗∗
0

V h
2 (∆) dF (∆) .

From (53) and (51), we obtain

V h
2 (∆) = U + P2 +

λµs
1

λµs
1 + κ+ r

∆∗∗
0 −∆∗

0

κ+ r
+

∆−∆∗∗
0

κ+ r
.

Substituting the above equation and V s
2 (∆) in (51), we obtain

E
[
max

{
V s
2 (∆) ,V h

2 (∆)
}]

= U+P2+
λµs

1

λµs
1 + κ+ r

∫ ∆∗∗
0

∆∗
0

[1− F (∆)] d∆

κ+ r
+

∫ ∆

∆∗∗
0
[1− F (∆)] d∆

κ+ r
.

The above equation, (54), and (49) imply

P2 =
1 +∆∗∗

0

r
− λµϵ

1

λµϵ
1 + κ+ r

∆∗∗
0 −∆∗

0

r
. (71)

Step VII. Substituting (21) into (5) and (7), we have

κ
(
µh
0 +X2 + µb

1

)
F (∆∗∗

0 )− κµb
1 = λµb

1µ
s
1 + κ

(
µh
0 + µb

1 +X2

)
F (∆∗

0) ,

κµh
0 = λµb

1µ
s
1 + κ

(
µh
0 + µb

1 +X2

)
F (∆∗

0) . (72)

The above two equations imply

F (∆∗∗
0 ) = 1− X2

µh
0 +X2 + µb

1

.

Substituting (11) and (20) into the above equation, we have (23). Substituting (11) and

(20) in (72), we obtain

κ (N −X1 −X2)− κµϵ
1 = λ (µϵ

1)
2 + κ (N −X1)F (∆∗

0) . (73)
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From (20) and (6), we have

κµϵ
1 + λ (µϵ

1)
2 = κX1F (∆∗

1) . (74)

When ϵ → 0, ∆∗
0 and ∆∗

1 will converge to the same limit, which we denote as ∆∗, and

let µ1 ≡ limϵ→0 µ
ϵ
1. Moreover, from (73) and (74), we obtain a quadratic equation of µ1:

(µ1)
2 +

κ

λ
µ1 −

κX1

λ

(
1− X1 +X2

N

)
= 0. (75)

The positive root is (30). Substituting it into (73), we have (22). It is straightforward to

obtain the comparative statics in Propositions 2–5.

Proof of Corollary 1

With f(·) in (36), Proposition 3 implies that LP is increasing in X2 if and only if

1
a
−B

N
1
a

>

1
a
−B + (1−B)a+1

a(a+1)
κ
r
F (∆∗∗)

(N −X1)
1
a

, (76)

where B ∈
(
0, 1

2

)
is given by

B =
λκX1

2
F (∆∗)(

κ
2

)2
+ λκX1F (∆∗) +

(
κ
2
+ r
)√(

κ
2

)2
+ λκX1F (∆∗)

.

There are 3 cases. Case 1: If a < 1
B
, (76) can be rewritten as

1
a
−B

1
a
−B + (1−B)a+1

a(a+1)
κ
r
F (∆∗∗)

>
N

1
a

(N −X1)
1
a

.

The left hand side (LHS) of the above inequality is smaller than 1, while the right hand

side (RHS) is larger than 1. So, the inequality never holds and LP is decreasing in X2.

Case 2: If 1
B
≤ a < a1, where a1 is given by

a1 =
1−B

2B

(
1 +

κ

r
F (∆∗∗)

)
+

√(
1−B

2B

)2 (
1 +

κ

r
F (∆∗∗)

)2
+

1

B

(
1 +

κ

r
F (∆∗∗)

)
,

the LHS of (76) is negative while the RHS of (76) is positive, so the inequality never

holds. Therefore, LP is decreasing in X2.
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Case 3: If a ≥ a1, (76) holds if and only if

N −X1

N
<

[
1− (1−B) a+ 1

(a+ 1) (aB − 1)

κ

r
F (∆∗∗)

]a
, (77)

Note that the LHS of (77) is between 0 and 1. The RHS of (77) is increasing in a.

Moreover, RHS = 0 if a = a1 and RHS>1 if a is sufficiently large. Hence, there exists a

unique â > a1 such that

N −X1

N
=

[
1− (1−B) â+ 1

(â+ 1) (âB − 1)

κ

r
F (∆∗∗)

]â
(78)

and inequality (77) holds if and only if a > â.

Therefore, combining all three cases, we obtain that the liquidity premium is decreasing

in X2 for a < â and increasing in X2 for a > â.

Proof of Proposition 6

We first compute an investor’s average value function across ∆ in the steady state. For

this, we use gxi (∆), where x = b, s, h and i = 0, 1, 2, to denote the density of investors

with value function V x
i (∆). Since one can sell or buy asset 2 immediately, we have

gb2 (∆) = o (1) and gs2 (∆) = o (1) for all ∆. In the steady state, the density and value

function for other types of investors are the following: i) inactive non-owners: V h
0 (∆) = U

is given by (49) and gh0 (∆) = (N −X1 −X2 − µ1)
f(∆)
F (∆∗)

for ∆ ∈ [0,∆∗]; ii) buyers of asset

1: V b
1 (∆) is given by (47) and gb1 (∆) = µ1

f(∆)
F (∆∗∗)−F (∆∗)

for ∆ ∈ [∆∗,∆∗∗]; iii) inactive

owners of asset 1: V h
1 (∆) = U + P1 +

∆−∆∗

κ+r
for ∆ ∈ [∆∗,∆∗∗], and

gh1 (∆) =

{ [
N − µ1

F (∆∗∗)−F (∆∗)

]
f (∆) , for ∆ ∈ [∆∗,∆∗∗] ,

X1f (∆) , for ∆ ∈
[
∆∗∗,∆

]
;

iv) sellers of asset 1: V s
1 (∆) = U + P1 +

∆−∆∗

λµ1+κ+r
for ∆ ∈ [∆,∆∗] and gs1 (∆) = µ1

f(∆)
F (∆∗)

for ∆ ∈ [∆,∆∗]; v) owners of asset 2: V h
2 (∆) = U + P2 +

∆−∆∗

κ+r
− ∆∗∗−∆∗

λµ1+κ+r
and gh2 (∆) =
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(N −X1) f (∆) for ∆ ∈
[
∆∗∗,∆

]
. The expected welfare is given by

E [V (∆)] =
1

N

[∫ ∆∗

0

V h
0 (∆) gh0 (∆) d∆+

∫ ∆∗∗

∆∗
V b
1 (∆) gb1 (∆) d∆

+

∫ ∆∗

∆

V s
1 (∆) gs1 (∆) d∆+

∫ ∆

∆∗
V h
1 (∆) gh1 (∆) d∆+

∫ ∆

∆∗∗
V h
2 (∆) gh2 (∆) d∆

]

=
1

r

[
X1 +X2

N
+

∫ ∆

∆∗
∆dF (∆)

]
−

κ
r
I1 + µ1I2

λµ1 + κ+ r
, (79)

where

I1 =

(
1− X1

N

)∫ ∆∗∗

∆∗
[F (∆∗∗)− F (∆)] d∆+

X1

N

∫ ∆∗

0

F (∆) d∆,

I2 =
1

N

[∫ ∆∗∗

∆∗

F (∆)− F (∆∗)

F (∆∗∗)− F (∆∗)
d∆+

∫ ∆∗

∆

F (∆)

F (∆∗)
d∆

]
.

Note that the first term in (79) is the expected utility with no friction, and the second

term is the welfare loss due to search friction. Since µ1 itself is also a function of λ, we

will use the notation µ1 (λ) to make it explicit. We define the following function

G (x, y) ≡ −
κ
r
I1 + I2y

x+ κ+ r
, for x > 0, y > 0,

and so the welfare loss is −G (λµ1 (λ) , µ1 (λ)). It is easy to see that G (λµ1 (λ) , µ1 (λ)) is

strictly increasing in λ and strictly concave in λ and converges to zero when λ → ∞.

The optimization problem (37) is equivalent to

max
λi

G
([
αλi + (1− α)λ

]
µ1

(
λ
)
, µ1

(
λ
))

− Γ (λi) .

The decentralized choice λd is characterized by the following first order condition:

αµ1

(
λd
) ∂G
∂x

(
λdµ1

(
λd
)
, µ1

(
λd
))

= Γ′ (λd
)
. (80)

The optimization problem (38) is equivalent to

max
λi

G (λµ1 (λ) , µ1 (λ))− Γ (λ) .

The centralized choice λc is characterized by the following first order condition:[
∂G (λµ1 (λ) , µ1 (λ))

∂x

d [λµ1 (λ)]

dλ
+

∂G (λµ1 (λ) , µ1 (λ))

∂y

dµ1 (λ)

dλ

]∣∣∣∣
λ=λc

= Γ′ (λc) . (81)
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Define

H (λ) ≡ αµ1 (λ)
∂G

∂x
(λµ1 (λ) , µ1 (λ)) = αµ1 (λ)

−G (λµ1 (λ) , µ1 (λ))

λµ1 (λ) + κ+ r
,

K (λ) ≡ µ1 (λ)

2

λµ1 (λ) + κ

λµ1 (λ) +
κ
2

−G (λµ1 (λ) , µ1 (λ))

λµ1 (λ) + κ+ r
+

(µ1 (λ))
2

2λµ1 (λ) + κ
I2,

then (81) and (80) can be rewritten as

H
(
λd
)

= Γ′ (λd
)
,

K (λc) = Γ′ (λc) ,

and

K (λ)−H (λ) =
µ1 (λ)

[λµ1 (λ) + κ+ r]2
J (λ) ,

where

J (λ) ≡
[
1

2
− α +

κ
2

2λµ1 (λ) + κ

]
κ

r
I1 +

[
1− α +

κ+ r

2λµ1 (λ) + κ

]
µ1 (λ) I2.

It can be shown that J (λ) is decreasing in λ, and

J (λ)|λ=0 = (1− α)
κ

r
I1 +

(
2− α +

r

κ

)
I2X1F (∆∗) > 0,

J (λ)|λ=∞ =

(
1

2
− α

)
κ

r
I1.

If α ≤ 1
2
, then J (λ)|λ=∞ > 0 and J (λ) > J (λ)|λ=∞ > 0 for any finite λ because J (λ)

is decreasing in λ. That is, K (λ) > H (λ) for any finite λ. In this case, we have λc > λd.

To see this, we suppose λc < λd. We then have

Γ′ (λd
)
= H

(
λd
)
< H (λc) < K (λc) = Γ′ (λc) .

However, Γ′′ (·) > 0 implies that Γ′ (λc) < Γ′ (λd
)
. This results in a contradiction.

For the case of α > 1
2
, Figure 3 is sufficient to show that both over- and underinvest-

ment are possible. In the online appendix, we characterize the necessary and sufficient

condition for over- and underinvestment.
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Proof of Proposition 7

The proof of this proposition is parallel to that of Proposition 1. The extra feature is that

during each instant, a fraction πX1dt of asset 1 is wiped out, and the same amount of asset

1 is issued into the economy. Instead of the quadratic equation (75) in the baseline model,

we now have a more general equation (41) to determine µb
1. Details for the calculations

are in the online appendix.

Proof of Proposition 8

From (41), we expand µb
1 as

µb
1 = mb

1/
√
λ+ o

(
1/
√
λ
)
, (82)

where

mb
1 =

√
X1

[
π + κ

(
1− X1 +X2

N

)]
.

From (82), we can obtain

∆† = ∆∗ + o
(
1/
√
λ
)
,

∆†† = F−1

(
1− X2

N − κ
π+κ

X1

)
+ o (1) ,

where ∆∗ is given by (22). We can thus expand P1 and the safety premium as

P1 =
1 +∆†

π + r
+ o (1) ,

SP =
π
(
1 + ∆†)

r (π + r)
+ o (1) .

Therefore, when λ is sufficiently large, we have

∂SP

∂X2

= − π

r (π + r)Nf (∆†)
< 0,

∂2SP

∂X2∂π
= − 1

(π + r)2Nf (∆†)
< 0.
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